Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Colloid Interface Sci ; 304: 102666, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35429720

RESUMO

Droplet interface bilayer (DIB) is a lipid bilayer formed when two lipid monolayer-coated aqueous droplets are brought in contact within an oil phase. DIBs, especially post functionalization, are a facile model system to study the biophysics of the cell membrane. Continued advances in enhancing and functionalizing DIBs to be a faithful cell membrane mimetic requires a deep understanding of the physicochemical characteristics of droplet interface bilayers. In this review, we provide a comprehensive overview of the current scientific understanding of DIB characteristics starting with the key experimental frameworks for DIB generation, visualization and functionalization. Subsequently we report experimentally measured physical, electrical and transport characteristics of DIBs across physiologically relevant lipids. Advances in simulations and mathematical modelling of DIBs are also discussed, with an emphasis on revealing principles governing the key physicochemical characteristics. Finally, we conclude the review with important outstanding questions in the field.


Assuntos
Bicamadas Lipídicas , Água , Biomimética , Membrana Celular , Modelos Biológicos
2.
J Colloid Interface Sci ; 614: 24-32, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35078083

RESUMO

HYPOTHESIS: Although wetting agents have been developed to limit tear film dewetting over contact lenses, systematic analyses correlating wetting agent properties to mechanisms of the tear film destabilization are not readily available. Clarifying destabilization characteristics across key physio-chemical variables will provide a rational basis for identifying optimal wetting agents. EXPERIMENTS: We employ an in-house, in vitro platform to comprehensively evaluate drainage and dewetting dynamics of five wetting agents across seventeen different formulations and two model tear film solutions. We consider the film thickness evolution, film thickness at breakup, dewetted front propagation, and develop correlations to contact angle to compare the samples. FINDINGS: Zwitterionic wetting agents effectively stabilize the tear film by reducing the film thickness at the onset of dewetting, and delaying the propagation of dewetted regions across the lens. Furthermore, tuning wetting agent surface concentrations and utilizing binary mixtures of wetting agents can enhance wetting characteristics. Finally, despite disparities in wetting agent molecular properties, the time to dewet 50% of the lens scales linearly with the product of the receding contact angle and contact angle hysteresis. Hence, we fundamentally establish the importance of minimizing the absolute contact angle and contact angle hysteresis for effective wetting performance.


Assuntos
Lentes de Contato Hidrofílicas , Agentes Molhantes , Lágrimas/química , Molhabilidade , Agentes Molhantes/análise
3.
J R Soc Interface ; 18(175): 20200860, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33530859

RESUMO

Droplet interface bilayers are a convenient model system to study the physio-chemical properties of phospholipid bilayers, the major component of the cell membrane. The mechanical response of these bilayers to various external mechanical stimuli is an active area of research because of its implications for cellular viability and the development of artificial cells. In this article, we characterize the separation mechanics of droplet interface bilayers under step strain using a combination of experiments and numerical modelling. Initially, we show that the bilayer surface energy can be obtained using principles of energy conservation. Subsequently, we subject the system to a step strain by separating the drops in a step-wise manner, and track the evolution of the bilayer contact angle and radius. The relaxation time of the bilayer contact angle and radius along with the decay magnitude of the bilayer radius were observed to increase with each separation step. By analysing the forces acting on the bilayer and the rate of separation, we show that the bilayer separates primarily through the peeling process with the dominant resistance to separation coming from viscous dissipation associated with corner flows. Finally, we explain the intrinsic features of the observed bilayer separation by means of a mathematical model comprising the Young-Laplace equation and an evolution equation. We believe that the reported experimental and numerical results extend the scientific understanding of lipid bilayer mechanics, and that the developed experimental and numerical tools offer a convenient platform to study the mechanics of other types of bilayers.


Assuntos
Bicamadas Lipídicas , Fosfolipídeos , Membrana Celular , Modelos Teóricos , Fosfatidilcolinas
4.
Adv Colloid Interface Sci ; 286: 102295, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33161297

RESUMO

The physics of foams and emulsions has traditionally been studied using bulk foam/emulsion tests and single film platforms such as the Scheludko cell. Recently there has been a renewed interest in a third class of techniques that we term as single bubble/drop tests, which employ isolated whole bubbles and drops to probe the characteristics of foams and emulsions. Single bubble and drop techniques provide a convenient framework for investigating a number of important characteristics of foams and emulsions, including the rheology, stabilization mechanisms, and rupture dynamics. In this review we provide a comprehensive discussion of the various single bubble/drop platforms and the associated experimental measurement protocols including the construction of coalescence time distributions, visualization of the thin film profiles and characterization of the interfacial rheological properties. Subsequently, we summarize the recent developments in foam and emulsion science with a focus on the results obtained through single bubble/drop techniques. We conclude the review by presenting important venues for future research.

5.
Langmuir ; 36(40): 11836-11844, 2020 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-32926631

RESUMO

Surfactants in aqueous solutions self-assemble in the presence of salt, to form long, flexible, wormlike micelles (WLM). WLM solutions exhibit viscoelastic properties and are used in many applications, such as for cosmetic products, drag reduction, and hydraulic fracturing. Understanding the coalescence stability of bubbles in WLM solutions is important for the development of WLM based products that require a stable dispersion of bubbles. In this paper, we investigate the thin film drainage dynamics leading up to the coalescence of bubbles at flat WLM solution-air interfaces. The salts and surfactant type and concentrations were chosen so as to have the viscoelastic properties of the tested WLM solutions span over 2 orders of magnitude in moduli and relaxation times. The various stages in drainage and coalescence, the formation of a thick region at the apex (a dimple), the thinning and washout of this dimple, and the final stages of drainage before rupture, are modified by the viscoelasticity of the wormlike micellar solutions. As a result of the unique viscoelastic properties of the WLM solutions, we also observe a number of interesting fluid dynamic phenomena during the drainage processes including elastic recoil, thin film ripping, and single-step terminal drainage.

6.
Sci Rep ; 10(1): 11378, 2020 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-32647349

RESUMO

Dynamic thin film interferometry is a technique used to non-invasively characterize the thickness of thin liquid films that are evolving in both space and time. Recovering the underlying thickness from the captured interferograms, unconditionally and automatically is still an open problem. Here we report a compact setup employing a snapshot hyperspectral camera and the related algorithms for the automated determination of thickness profiles of dynamic thin liquid films. The proposed technique is shown to recover film thickness profiles to within 100 nm of accuracy as compared to those profiles reconstructed through the manual color matching process. Subsequently, we discuss the characteristics and advantages of hyperspectral interferometry including the increased robustness against imaging noise as well as the ability to perform thickness reconstruction without considering the absolute light intensity information.

7.
J Colloid Interface Sci ; 567: 1-9, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32036112

RESUMO

Lubricant formulations are filtered to remove deleterious particulate matter. An unintended consequence of this important process is the detrimental effect of fine filtration on the foaming performance of lubricants with antifoam additives. Here we outline a method to study this phenomenon in detail by probing the coalescence stability of single bubbles in filtered antifoam laden lubricants. Initially, we establish the validity of Garrett's hypothesis for the tested antifoam laden lubricants. Subsequently, we show that the bubble stability in filtered lubricants are positively correlated to the number of filtration cycles - with the most dramatic changes in bubble stability accompanying the initial few cycles of filtration. Further, we show that post filtration, the stability of bubbles in lubricants is inversely correlated to the pore size of the filter and the volume fraction of antifoam in the lubricant prior to filtration. The results also reveal that in the presence of antifoam additives, the bubble coalescence times span multiple Rayleigh distributions. We also provide visual evidence that shows the tested antifoams employ a bridging-stretching mechanism to rupture non-aqueous foams. Finally, a simple probabilistic model is introduced that helps in analyzing the distribution of coalescence times of single bubbles to obtain insights into the volume fraction of antifoams in the lubricant. We believe these results are valuable in guiding the design of lubricants with robust and superior foaming performance.

8.
Sci Adv ; 5(10): eaax8227, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31692789

RESUMO

Complex molecules from crude oil, such as asphaltenes, can adsorb onto oil/water interfaces. This creates a viscoelastic network that may cause difficulties in oil recovery and oil spills. In addition to stabilization of oil/water emulsions, they may also cause the spontaneous formation of micron-sized droplets. Here, we investigate spontaneous emulsification in the presence of asphaltenes, probing parameters that may affect this phenomenon by observing isolated drops of water immersed in asphaltene/hydrocarbon solutions within a co-flow microfluidic device. The results indicate that the initial internal pressure of the drop strongly influences the rate at which the drop will shrink due to spontaneous emulsification. In addition, the viscoelastic skin formation by the asphaltenes inhibits increases in this pressure that normally accompanies a decrease in drop radius. Understanding this spontaneous emulsification has implications not only for the oil industry, but also to the cosmetics, foods, medical, and pharmaceutical industries.

9.
Proc Natl Acad Sci U S A ; 115(31): 7919-7924, 2018 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-30012609

RESUMO

Foaming in liquids is ubiquitous in nature. Whereas the mechanism of foaming in aqueous systems has been thoroughly studied, nonaqueous systems have not enjoyed the same level of examination. Here we study the mechanism of foaming in a widely used class of nonaqueous liquids: lubricant base oils. Using a newly developed experimental technique, we show that the stability of lubricant foams can be evaluated at the level of single bubbles. The results obtained with this single-bubble technique indicate that solutocapillary flows are central to lubricant foam stabilization. These solutocapillary flows are shown to originate from the differential evaporation of multicomponent lubricants-an unexpected result given the low volatility of nonaqueous liquids. Further, we show that mixing of some combinations of different lubricant base oils, a common practice in the industry, exacerbates solutocapillary flows and hence leads to increased foaming.

10.
Langmuir ; 32(46): 12031-12038, 2016 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-27798833

RESUMO

An experimental and theoretical investigation is conducted to understand the role of compressibility on the quasi-static expansion and contraction of a bubble that is pinned at the opening of a small capillary. The results show that there are two regimes of expansion and contraction depending on the values of two dimensionless parameters which correspond to a dimensionless volume and maximum capillary pressure. In one regime, not all bubble sizes are accessible during expansion and contraction, and the bubbles exhibit a hysteretic behavior when cycling through expansion and contraction. We call this the bubble shape hysteresis. The magnitude of the bubble shape hysteresis is computed for a realistic range of the nondimensional parameters. In the other regime, the bubble size can be varied continuously, but compressibility can still make it difficult to smoothly control the size of the bubble. The theoretical analysis shows that compressibility affects the evolution of the bubbles, even when the bubble is smaller than a hemispherical cap. The analysis also provides the infusion and withdrawal rates that a syringe pump must supply to expand and contract the bubble at a desired rate, accounting for compressibility. The validity of the assumptions used in the model is verified by comparison against experimental data.

11.
Langmuir ; 23(7): 3975-80, 2007 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-17305381

RESUMO

We report surface pressure-area (Pi-A) isotherms of bidisperse mixtures of anionic polystyrene latex particles at a water/n-decane interface as well as optical photographs of the interface for various compressions and mixture ratios. In the case of mixtures of 3 and 5 mum particles, we observe crystalline layers at high or low concentration ratios, where the "impurity" particles concentrate at the grain boundaries of the crystalline structure. At intermediate ratios, the layers become highly disordered. However, in both cases, we show that the shape of the isotherms remains unchanged. In the case of the mixtures of 9 mum particles with either 3 or 5 mum particles, the smaller particles aggregate around the larger particles through capillary interaction resulting in the formation of large fractal aggregates. At high compression, these layers contain holes that seem very compressible. As a result, the surface pressure isotherms show a smaller surface pressure jump than for other mixtures.

12.
Langmuir ; 22(15): 6605-12, 2006 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-16831003

RESUMO

The behavior of monolayers of monodisperse prolate ellipsoidal latex particles with the same surface chemistry but varying aspect ratio has been studied experimentally. Particle monolayers at an air-water interface were subjected to compression in a Langmuir trough. When surface pressure measurements and microscopy observations were combined, possible structural transitions were evaluated. Ellipsoids of a sufficiently large aspect ratio display a less abrupt increase in the compression isotherms than spherical particles. Microscopic observations reveal that a sequence of transitions is responsible for this more gradual increase of the surface pressure. When a percolating aggregate network is used as the starting point, locally ordered regions appear progressively. When it reaches a certain surface pressure, the system "jams", and in-plane rearrangements are no longer possible at this point. A highly localized yielding of the particle network is observed. The compressional stress is relieved by flipping the ellipsoids into an upright position and by expelling particles from the monolayer. The latter does not occur for spherical particles with similar dimensions and surface chemistry. In the final stage of compression, buckling of the monolayer as a whole was observed. The effect of aspect ratio on the pressure area isotherms and on the obtained percolation and packing thresholds was quantified.


Assuntos
Coloides/química , Látex/química , Membranas Artificiais , Microesferas , Poliestirenos/química , Tamanho da Partícula , Pressão , Propriedades de Superfície
13.
Langmuir ; 20(26): 11517-22, 2004 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-15595778

RESUMO

The rheological behavior of different precursor poly(p-phenylene vinylene) (prec-PPV) monolayers at the air-water interface was investigated using an interfacial stress rheometer (ISR). This device nicely reveals a transition of the precursor poly(2,5-dimethoxy-1,4 phenylene vinylene) (prec-DMePPV) monolayer from Newtonian to elastic behavior with increasing surface pressure. The transition is accompanied by an increase in the modulus. This behavior coincides with the coagulation of different 2D condensed domains as revealed by Brewster angle microscopy (BAM). However, partly converted prec-DMePPV monolayers show elastic behavior even at low surface pressures, although a sudden increase of the moduli does occur. This phenomenon is attributed to enhanced hydrophobic interactions between the conjugated moieties in the partly converted polymers. The latter also explains the stretching behavior of the partly converted prec-DMePPV upon transfer in Langmuir-Blodgett-type vertical dipping. The increase of the moduli which is observed is much more gradual in the precursor poly(2,5-dibutoxy-1,4-phenylene vinylene), prec-DBuPPV, a monolayer which is in agreement with the expected expanded state of the latter monolayer.

14.
Phys Rev Lett ; 87(11): 115501, 2001 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-11531533

RESUMO

We report experimental results on the aggregation kinetics in magnetorheological fluids subject to a constant uniaxial magnetic field using the technique of scattering dichroism. We show that the number of aggregated particles displays a long-time power-law dependence with exponents that correspond to two different aggregation regimes. These regimes coincide with 3D and 1D-like aggregation. We also derive the values of both time exponents for the number of aggregated particles.

15.
Appl Biochem Biotechnol ; 20-21: 845-67, 1989.
Artigo em Inglês | MEDLINE | ID: mdl-11541294

RESUMO

We have examined the relationships between primary, secondary, and tertiary structures of polysaccharides exhibiting the rheological property of friction (drag) reduction in turbulent flows. We found an example of an exopolysaccharide from the yeast Cryptococcus laurentii that possessed high molecular weight but exhibited lower than expected drag reducing activity. Earlier correlations by Hoyt showing that beta 1 --> 3, beta 2 --> 4, and alpha 1 --> 3 linkages in polysaccharides favored drag reduction were expanded to include correlations to secondary structure. The effect of sidechains in a series of gellan gums was shown to be related to sidechain length and position. Disruption of secondary structure in drag reducing polysaccharides reduced drag reducing activity for some but not all exopolysaccharides. The polymer from C. laurentii was shown to be more stable than xanthan gum and other exopolysaccharides under the most vigorous of denaturing conditions. We also showed a direct relationship between extensional viscosity measurements and the drag reducing coefficient for four exopolysaccharides.


Assuntos
Polissacarídeos/química , Leveduras/química , Biopolímeros/análise , Biopolímeros/química , Biopolímeros/isolamento & purificação , Biotecnologia , Candida , Cryptococcus , Aditivos Alimentares/química , Fricção , Pichia , Polissacarídeos/análise , Polissacarídeos/isolamento & purificação , Polissacarídeos Bacterianos/química , Reologia , Rhodotorula , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...